(c) The wave function of a particle is given by

$$\psi_n(x) = A \sin \frac{n\pi x}{a} \text{ when } 0 < x < a$$
$$= 0 \text{ when } x < 0 \text{ and } x > a$$

Find the normalized form of the wave function.

(d) What is matter wave? (1+3)+2+3+1=10

**

TDP (General) 5th Semester Exam., 2020 (Held in 2021)

PHYSICS

(General)

FIFTH PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, taking two from each Unit

UNIT-I

- 1. (a) Show that the plane electromagnetic waves in free space travel with the velocity c.
 - (b) What do you mean by intrinsic impedance of free space?
 - (c) Describe briefly the working of a ruby laser and state how population inversion has been achieved in this device.

 3+2+(3+2)=10

- 2. (a) Write a BASIC program to find all the prime numbers from 1 to 100.
 - (b) What are the characteristics of high-level language?
 - (c) What is the use of the basic statement 'KILL'?
 - (d) What are the advantages of optical fibre over co-axial cable? 4+2+2=10
- 3. (a) Using Boolean algebra verify

$$A + \overline{A}B = A + B$$

- (b) What is the difference between a half adder and a full adder? Construct a full-adder circuit using two-half adders and an OR gate.
- (c) Discuss with truth table the working principle of a R-S flip-flop. 2+(2+2)+4=10

- (a) State Heisenberg's uncertainty principle in terms of energy and time.
 - (b) Write an expression for the wavelength of the matter wave associated with an electron accelerated through a potential difference V.

- (c) From Planck's energy distribution law of black-body radiation, derive Wien's displacement law.
- (d) If $i\hbar \frac{\partial}{\partial x}$ is an eigenoperator to the function e^{-ikx} , then find the corresponding eigenvalues. 2+2+3+3=10
- 5. (a) Write the physical significance of a wave function.
 - (b) Draw the energy-level diagram for a particle confined in a one-dimensional potential well.
 - (c) The lowest energy possible for a particle confined in a one-dimensional box is 40 eV. What are the next three higher energies?
 - (d) What do you mean by free particle? 2+3+3+2=10
- 6. (a) Write time dependent Schrödinger equation and hence solve it by the method of separation of variables.
 - (b) What is the need for normalization of wave function?

TDP (General) 5th Semester Exam., 2019

PHYSICS

(General)

FIFTH PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, taking two from each Unit

UNIT-I

- 1. (a) What is pointing vector?
 - (b) Explain how Maxwell generalized Ampere's circuital law.
 - (c) Derive the expression for energy density in an electromagnetic wave. 2+3+5=10
- 2. (a) What is a metastable state? Write down its significance in case of LASER.
 - (b) What do you mean by graded-index fibre? Discuss its advantage over step-index fibre.

· 1/2 14

AND I THE TANK

- (c) Explain the terms spontaneous emission and stimulated emission.

 (1+2)+(2+2)+(1½+1½)=10
- 3. (a) How can you design AND gate using NOR gate only?
 - (b) Write a basic programme to determine whether a given number is prime or not.
 - (c) What is the application of the basic statement LIST?
 - (d) Write the difference between RAM and ROM. 2+4+2+2=10

- **4.** (a) Discuss the failure of classical theory in explaining black-body radiation phenomenon.
 - (b) Show how one can arrive at Bohr's quantization condition on the basis of de Broglie's hypothesis of matter waves.
 - (c) If E_k be the kinetic energy of a particle with rest mass m_0 , prove that the de Broglie wavelength is given by

$$\lambda = \frac{hc}{\sqrt{E_k(E_k + 2m_0c^2)}}$$
 4+3+3=10

- 5. (a) Show that electron diffraction through a narrow slit takes place in accordance with Heisenberg's uncertainty principle.
 - (b) Show that if uncertainty in the location of a particle is equal to the de Broglie wavelength associated with the particle, the uncertainty in its velocity is equal to its velocity.
 - (c) Establish Schrödinger's time independent one-dimensional wave equation from the classical differential equation of wave.

 4+2+4=10
- 6. (a) Solve the Schrödinger's wave equation for a particle confined in a one-dimensional box.
 - (b) The wave function of a particle moving in a potential free region is given by $\psi(k) = A\cos kx$, where A and k are real constants. Is ψ an eigenstate of the operators \hat{H} and \hat{p}_x ? If so, find the corresponding eigenvalues.
 - (c) What is zero-point energy? 4+(2+2)+2=10

For an electron in a one-dimensional infinite potential well of width 1 Å, calculate the separation between the two lowest energy levels and frequency of the photon corresponding to a transition between these two levels. (2+2)+3+3=10

13321/ 1804 1901

S-5/PHSG/05/18

TDP (General) 5th Semester Exam., 2018

PHYSICS

(General)

FIFTH PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, selecting two from each Unit

UNIT-I

- State and establish Poynting's theorem.
 - From Maxwell's equation

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 and $\vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$

show that $\vec{\nabla} \cdot \vec{B} = 0$ and $\vec{\nabla} \cdot \vec{D} = \rho$.

- How is population inversion achieved in (1+3)+3+3=10ruby laser?
- Draw a flowchart to find the smallest among N given input numbers. The value of N is to be given as an input.

(Turn Over)

- Illustrate the use of FOR-NEXT and IF-THEN-ELSE statements in basic programming with example.
- What are the basic components of lasing action? 3+4+3=10
- Draw the logic circuit of the Boolean **3.** (a) expression $Y = AB + \overline{AB}$. Write the corresponding truth table.
 - What is the importance of a flip-flop in digital system?
 - Perform the binary addition of 101 and 100 using full-adder and half-adder circuits. (2+2)+2+4=10

- Derive Planck's energy distribution law of black-body radiation.
 - State and explain de Broglie hypothesis of matter wave.
 - Calculate de Broglie wavelength of an electron moving with velocity $\frac{3}{5}c$.

5+2+3=10

- matter wave? Find 5. (a) What is expression for the wavelength of the matter wave associated with an electron accelerated through potential difference V.
 - eigenfunction Find the for the momentum operator.
 - The wave function of a particle confined in a box of length a is

$$\psi(x) = \sqrt{\frac{a}{2}} \sin \frac{\pi x}{a}, \quad 0 \le x \le a$$

Calculate the probability of finding the particle in the region 0 < x < a/2. (1+3)+3+3=10

- 6. (a) What is the necessity of normalizing a wave function? Give Born's interpretation regarding wave function.
 - Show that the lowest ground-state energy of a particle in one-dimensional potential box with rigid walls is in with uncertainty agreement the principle.

M9/129a

- 6. (a) Explain briefly the concept of zero-point energy for motion of a free particle in a one-dimensional box.
 - (b) The lowest energy of a free particle entrapped in a one-dimensional box is 40 eV. What are the next two higher energies the particle can have?
 - (c) What do you mean by eigenvalue and eigenfunction related to quantum mechanical operator?
 - (d) Normalise the one-dimensional wave function for a free particle in a box of width l given by

$$\psi_n(x) = \begin{cases} A \sin\left(\frac{n\pi x}{l}\right), & \text{for } 0 < x < l \\ 0, & \text{outside} \end{cases}$$

The symbols have their usual meanings.

2+2+3+3=10

TDP (General) 5th Semester Exam., 2017

PHYSICS

(General)

FIFTH PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, selecting two from each Unit

UNIT-I

- 1. (a) Write down the four Maxwell's electromagnetic field equations. Using plane wave solution, show that electromagnetic waves in free space are transverse in nature.
 - (b) State and mathematically express Poynting theorem. Using this expression, define Poynting vector.
 - (c) Calculate the magnitude of Poynting vector at the surface of a hot spherical radiating body of radius 2×10^6 m. Given, power radiated by the body = 4×10^{22} watt. (2+3)+(2+1)+2=10

8M/138a

- 2. (a) Define core and cladding in optical fibre.
 - (b) Mention different types of loss in optical-fibre transmission.
 - (c) Discuss different methods of pumping to create a population inversion.
 - (d) Explain spontaneous emission and stimulated emission.
 - (e) Name the active material used in Ruby laser. Which is the prominent wavelength emitted by Ruby laser?

 2+2+2+2=10
- 3. (a) What are meant by algorithm and flowchart? Draw a flowchart to find the largest among three different numbers given as input.
 - (b) Convert (54.75)₁₀ into binary number.
 - (c) Draw a two-input AND gate circuit using P-N junction diodes and explain its operation. (2+2)+2+(1+3)=10

4. (a) Using the expression for Planck's energy distribution law for blackbody radiation, show that Wien's radiation law and Rayleigh-Jeans radiation law are the limiting cases of Planck's distribution law.

- (b) The de Broglie wavelength of an electron is 1Å in non-relativistic motion. What is its velocity?
- (c) State Heisenberg's uncertainty principle.
- (d) Prove that for rotational motion of a particle the uncertainty principle can be stated in the form

$\Delta L \cdot \Delta \phi \geq \hbar$

where ΔL is the uncertainty in the angular momentum of the particle and $\Delta \phi$ is the uncertainty in its angular position. 4+2+1+3=10

- 5. (a) What should be the important properties of a well-behaved and physically acceptable wave function? Explain Born's interpretation of wave function.
 - (b) A proton and deuteron have the same kinetic energy. Which of the two has longer de Broglie wavelength?
 - (c) Establish Schrödinger's timeindependent one-dimensional wave equation from the classical differential equation of wave. (2+2)+2+4=10

- (b) Draw the energy-level diagram for a particle confined in one-dimensional box.
- (c) An electron is confined in a one-dimensional box of width 4Å. Find the energy of the electron in the first excited state.

 5+2+3=10

TDP (General) 5th Semester Exam., 2016

PHYSICS

(General)

FIFTH PAPER

Full Marks: 40

Time: 2 hours

The figures in the margin indicate full marks for the questions

Answer four questions, selecting two from each Unit

UNIT-I

- 1. (a) Establish the equation of electromagnetic wave propagation in free space using Maxwell's electromagnetic equations.
 - (b) Discuss the advantages of graded index fibre over step-index fibre.
 - (c) What are meant by temporal and spatial coherences? 5+2+3=10

- 2. (a) Write down the differences between ROM and RAM.
 - (b) What is meant by machine language? How does it differ from assembly language?
 - (c) Draw a flowchart to find the sum of the square of first N natural numbers.
 - (d) Write a basic program to find the factorial of a given number N. N will be given as input. 2+(1+1)+3+3=10
- 3. (a) Simplify the Boolean expression: $Y = (\overline{A+B})(\overline{A} + \overline{C})(\overline{B} + \overline{C})$
 - (b) Design a two-input XOR gate using only NAND gates.
 - (c) Give the truth table of a half-adder.
 - (d) Discuss with truth table the working of a D flip-flop. 2+3+2+3=10

4. (a) Derive Planck's energy distribution law of black-body radiation.

(b) Show that the de Broglie wavelength of a particle of rest mass m_0 and kinetic energy E_k is given by

$$\lambda = \frac{h}{\sqrt{2m_0 E_k}} \left(1 + \frac{E_k}{2m_0 c^2} \right)^{-\frac{1}{2}}$$

where h is Planck's constant and c is the velocity of light in free space.

- (c) What is Bohr's complementary principle? 5+3+2=10
- **5.** (a) Draw the energy distribution curves for black-body radiation at various temperatures. Hence explain the nature of the curves.
 - (b) Deduce the quantum mechanical operator forms of momentum and energy.
 - (c) Show that the function $\psi(x) = Ae^{ikx} + Be^{-ikx}$ is an eigen function of \hat{p}^2 , where \hat{p} is the momentum operator. 4+4+2=10
- 6. (a) Solve the Schrödinger's wave equation for a free particle confined in a one-dimensional box to obtain normalized wave function.