

Programme: B.Sc. Physics Programme Code: TDPH BSH

Programme Specific Outcomes (PSOs) for B.Sc. Physics

Sl. No.	On completing B.Sc. Physics, the student will be able to:
PSO-1	Comprehend physics principles and their applications in the problems of everyday life.
PSO-2	Possess industry-specific skills for the existing industrial jobs, and for developing new
	technologies.
PSO-3	Understand the advanced methods of scientific inquiry and develop skills for extensive
	research.
PSO-4	Know mathematical methods so as to assess the advanced theories and provide
	deductions.
PSO-5	Develop skills for understanding scientific literature and creating scientific
	communication in the written& through hands on experiment.
PSO-6	Not only stitch a fragmented problem into a complete one, but also create alternate
	solutions in diverse fields of physical, biological and social sciences.

Course Outcomes (COs): B.Sc. Physics Semester I Course Code-PHSH Paper: H1

Course Title: Mathematical Methods in Physics (Unit-I)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand and apply the concepts of vector calculus including various	PSO-1, PSO-4
	differential operators like Gradient, Divergence, Curl their physical	
	meanings. The idea of vector integration and related theorems like Gauss's	
	divergence theorem, Stoke's theorem and Green's theorem	
CO-2	To get brief idea about Orthogonal curvilinear co-ordinate system, unit	PSO-1, PSO-4
	vectors in such system and various operators like gradient, divergence, curl	
	and Laplacian in different curvilinear co-ordinate systems like Cartesian,	
	spherical polar & cylindrical polar co-ordinates.	
CO-3	To deal with eigen value and eigen vectors calculation of a given Matrix,	PSO-4
	Properties of matrices, Calculation of Inverse of a matrix, Diagonalization	
	of matrix	
CO-4	To acquire some idea of Beta and Gamma functions, their properties, inter-	PSO-4
	relationship, their applications to some problems	
CO-5	To apply Fourier series to study the complex nature of a given function	PSO-4

Course Title: Mechanics (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Apply Newton's laws to any physical situation, and deduce its	PSO-1, PSO-3,
	kinematical behaviour, Also use of equation of motion of a particle	PSO-4, PSO-6
	under time dependent force, resistive force	
CO-2	Understand the concepts of moment of inertia & radius of gyration,	PSO-1, PSO-3,
	parallel and perpendicular axes theorem and apply	PSO-4
	them to industrial and day-to-day life situations	
CO-3	To get some idea about the Frame of reference & rotating frame of	PSO-1, PSO-6
	reference, Coriolis and centrifugal force and to understand various physical	
	phenomena from the point of view of Coriolis force	
CO-4	Know about velocity and acceleration in plane polar co-ordinate (radial and	PSO-4
	transverse components)	
CO-5	Get some basic idea of Central force, differential equation of a particle	PSO-1, PSO-4
	moving under central force, nature of orbit, Deductions of Kepler's laws on	
	planetary motion and their applications	

Course Title: General Properties of Matter (Unit-III)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Get some idea about gravitational field and potential, Applications of	PSO-1, PSO-3,
	Gauss's theorem in the calculation of gravitational field in some	PSO-4
	symmetric cases (spherical & cylindrical), Poisson's and Laplace	
	equations in gravitation and their application.	
CO-2	Understand the concepts of elasticity and various kinds of elastic	PSO-1, PSO-3,
	moduli, concept of twisting, bending, and depressions produced in	PSO-4
	cantilever and double beam. The knowledge so acquired can be utilized	
	to understand the some physical phenomena in daily life.	
CO-3	Get the idea of surface tension, surface energy, their relation, meaning of	PSO-1, PSO-6
	excess pressure, explanation of various common phenomena using this	
	concept, experimental techniques employed for the determination of surface	
	tension	
CO-4	An important property of fluid viz. viscosity, Poiseulli's equations, Stoke's	PSO-4
	law, terminal velocity	
CO-5	Get an idea of fluid dynamics, Equation of continuity, Bernoulli's theorem	PSO-1, PSO-4
	and its applications in a number of cases.	

Course Title: Vibrations & Waves (Unit-IV)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Get elementary idea about SHM its differential equation and solution,	PSO-1, PSO-3,
	composition of SHM, Lissajou's figures, damped and forced vibration	PSO-4
	and their related discussion	
CO-2	Application of resonance, Idea about quality factor, sharpness of	PSO-1, PSO-3,
	resonance	PSO-4
CO-3	Various kinds of wave dynamics, longitudinal and standing waves, phase	PSO-1, PSO-6
	and group velocity	
CO-4	To understand how to form the differential equation of transverse vibration	PSO-4
	in a stretched string	
CO-5	To get idea about the theories of plucked, struck and bowed strings	PSO-1, PSO-4
CO-6	Application of acoustics of building, Growth and decay of sound intensity,	PSO-1, PSO-5
	Idea of reverberation, reverberation time and Sabine's law, Charcateristics	
	of a good auditorium,	
CO-7	Analyse the acoustics of a room, large or small; presenceof	PSO-2, PSO-3
	noise and its elimination.	

Course Outcomes (COs): B.Sc. Physics Semester II Course Code-PHSH Paper-H2 A

Course Title: Electrostatics & Magnetostatics (Unit-I)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Get an idea about Gauss's theorem in electrostatics and how to apply	PSO-1, PSO-3,
	the same for symmetric charge distribution problem to find the electric	PSO-4
	field intensity	
CO-2	Know about Coulomb's theorem, mechanical force on a charged	PSO-1, PSO-3,
	surface, energy per unit volume	PSO-4
CO-3	Know how to get potential and electric field using Poisson's and Laplace's	PSO-1, PSO-6
	equation in spherical and cylindrical charge distribution	
CO-4	Get elementary idea about the method of electrical images to the field	PSO-2, PSO-3
	problem in few cases	
CO-5	Get basic idea of working of a capacitor, calculation of capacitance in some	PSO-1, PSO-2,
	cases, idea about the electrometers	PSO-3
CO-6	Understand the dipole-dipole interaction, dielectric medium, polarization	PSO-1, PSO-2,
	and susceptibility	PSO-3
CO-7	Get some elementary idea about various terminology on magnetism like	PSO-2, PSO-3
	permeability, Hysteresis, Boundary conditions, magnetic circuit etc.	

Course Title: Optics (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand the basics of Geometrical optics including refraction from	PSO-2, PSO-3,
	spherical surfaces, thin lenses and their combination	PSO-4
CO-2	Get an idea about the various kinds of Cardinal points	PSO-2, PSO-3,
		PSO-5
CO-3	Know about various types of aberration like spherical and chromatic	PSO-2, PSO-3
	aberrations and their remedies	
CO-4	Get a preliminary idea about the wave theory of light including the	PSO-2, PSO-3
	interference of light & Young's experiment	
CO-5	Understand the various kinds of interference demonstrative experiments,	PSO-1, PSO-2,
	related numerical problems	PSO-3
CO-6	Generate some idea about both the Fresnel and Fraunhofer class of	PSO-1, PSO-2,
	diffraction, Zone plate	PSO-3
CO-7	Get idea of limit of resolution and resolving power, How to calculate the	PSO-2, PSO-3
	resolving power of grating, prism, microscope and telescope	
CO-8	Know about the phenomenon of polarization and how to form different	PSO-2, PSO-3
	polarised light, idea of compensator, optical activity	

Department of Physics

Course Code-H2 B (PRACTICAL): NON-ELECTRICAL

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Know how to determine experimentally the thermal conductivity of a	PSO-5
	bad conductor using Lees and Choltron's method	
CO-2	Determine the coefficient of viscosity of a given liquid (Poiseulli's	PSO-5
	method) using experimental techniques	
CO-3	Generate extensive idea about the various terminology of spectrometer,	PSO-5
	labelling and adjustment of a spectrometer, Use of spectrometer,	
	experimental determination of dispersive power of material of prism, study	
	of angle of deviation versus wavelength curve etc.	
CO-4	Get acquainted to illustrate the phenomenon like polarization and optical	PSO-5
	activity. Using these concepts, ability will be attained to determine the	
	unknown concentration of an optically active substance by a polarimeter	
CO-5	Understand the phenomenon of diffraction of light (Fraunhofer diffraction)	PSO-5
	and use that theoretical concept to determine the slit width and the	
	separation between the slits of a double slit.	

Course Outcomes (COs): B.Sc. Physics Semester III Course Code-PHSH Paper-H3 A

Course Title: Current Electricity (Unit-I) Sl. No. On completing the course, the student will be able to: **PSOs** addressed CO-1 Apply Kirchhoff's laws and analyse the electrical circuits. PSO-1, PSO-2, PSO-3, PSO-4 PSO-1, PSO-2, **CO-2** Apply Thevenine's, Norton's, Superposition and Maximum Power PSO-3, PSO-4 Transfer theorem Understand the inadequacy of Wheatstone's bridge, Working principle of PSO-1, PSO-2, **CO-3** Platinum resistance thermometer, Callendar & Griffith Bridge and how to PSO-3 measure the boiling point of a given liquid Understand the Working principle of potentiometer and its applications in a **CO-4** PSO-1, PSO-2, number of cases PSO-3 Understand the various theories behind some thermoelectric phenomena, PSO-1, PSO-2, **CO-5** Inter-relation, thermoelectric power, applications of thermo-couple PSO-3 PSO-1, PSO-2, Analyse the detailed theory behind the working of moving coil dead beat **CO-6** and ballistic types of galvanometers and correction due to damping PSO-3 PSO-1, PSO-2, **CO-7** Understand the phenomenon *electromagnetic induction*, Calculation of self and mutual inductances in a number of cases, Eddy currents and their PSO-3, PSO-4, applications in daily life PSO-5 Understand the basics behind the charging and discharging of a capacitor in PSO-1, PSO-2, **CO-8** a series LCR circuit considering various conditions PSO-3 PSO-1, PSO-2. **CO-9** Analyse AC circuits with circuit elements and their combinations, theory of transformer and its applications PSO-3, PSO-4

Course Title: Thermal Physics (Thermodynamics, Radiation, Kinetic Theory of Gases, Transport Phenomenon and Refrigeration) (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand the basic concepts of thermodynamics such as state	PSO-1, PSO-2,
	variables, state of a system, work done and internal energy.	PSO-3, PSO-4
CO-2	Apply the laws of thermodynamics in various processes /	PSO-1, PSO-2,
	systems (in day-to-day phenomena) to calculate the work done/	PSO-3, PSO-4
	internal energy	
CO-3	Analyse the performance of heat engines, refrigerators, and their	PSO-1, PSO-2,
	components using the first law of	PSO-3
	thermodynamics.Role of p-V diagram to calculate the efficiency of	
	Carnot's engine, Limitations of first law of thermodynamics	
CO-4	Understand Carnot's theorem and Absolute scale of temperature, concept of	PSO-1, PSO-2,
	entropy and change of entropy, calculation of the change of entropy in a	PSO-3
	number of cases`	
CO-5	Analyse Maxwell's thermodynamical relations in deriving a number of	PSO-1, PSO-2,

Department of Physics

	thermodynamical relations	PSO-3
CO-6	Elaborate the idea of emissive and absorptive power, Kirchhoff's law,	PSO-1, PSO-2,
	Black Body radiation, Different laws to interpret the black body radiation	PSO-3
	curve	
CO-7	Understand kinetic theory of gases, Maxwell's distribution law, different	PSO-1, PSO-2,
	types of velocities, collision probability, mean free path, degrees of	PSO-3, PSO-4,
	freedom, inter-relation	PSO-5
CO-8	Analyse the various transport phenomena like viscosity and thermal	PSO-1, PSO-2,
	conductivity and their relation, Brownian motion	PSO-3

Course Code-H3 B (PRACTICAL): ELECTRICAL

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Build the circuit connections to prepare 1 Ohm Coil, to study thermoelectric curve and hence to determine thermoelectric power, boiling point of a given liquid, high resistance by leakage method, mutual inductance between two coils, construction of rectifier circuits	PSO-5

Course Outcomes (COs): B.Sc. Physics Semester IV Course Code-PHSH PAPER-H4-A

Course Title: Mechanics-II & Relativity (Unit-I)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand the basic concepts of Rigid body dynamics, angular momentum	PSO-1, PSO-2,
	of a rigid body, Understand the fundamental concept of moment of inertia	PSO-3, PSO-4
	andinertia tensor of a rigid body.	
CO-2	Apply the above-mentioned concepts to understand the ellipsoid of inertia	PSO-1, PSO-2,
	Apply critical thinking skills to describe the motion of the rigid	PSO-3, PSO-4
	body about its principal axis.	
CO-3	Get an idea about inertia tensor, principle axis in simple symmetric cases,	PSO-1, PSO-2,
	Apply the theories learnt and the skills acquired to solve real	PSO-3
	time problems, both analytically and computationally.	
CO-4	Understand the idea of generalized coordinates, definition of constraints,	PSO-1, PSO-2,
	forces of constraints and degrees of freedom.	PSO-3
CO-5	Apply the idea generalized co-ordinates and the concept of constraints in	PSO-1, PSO-2,
	different cases, idea of generalized velocity, potential and forces	PSO-3
CO-6	Analyse the Lagrangian formulation and its superiority over Newtonian	PSO-1, PSO-2,
	mechanics, the idea of virtual work, D'Alembert's principle	PSO-3
CO-7	Apply Lagrange's formulation to understand complex	PSO-1, PSO-2,
	mechanical systems and solve quantitative problems in applied	PSO-3, PSO-4,
	physics.	PSO-5
CO-8	Analyse the Hamiltonian formulation and its advantages, computation	PSO-1, PSO-2,
	techniques of Hamiltonian in some simple cases.	PSO-3
CO-9	Apply the concepts of special theory of relativity to the various	PSO-1, PSO-2,
	physical phenomena, and understand its significance.	PSO-3, PSO-4,
		PSO-5
CO-10	Get a detailed idea of Michaelson -Morley's experiment and its necessity,	PSO-1, PSO-2,
	postulates of special theory of relativity, Idea of Lorentz's transformation,	PSO-3
	relativity of simultaneity length contraction and time dilation, addition of	
	velocities, variation of mass with velocities, equivalence of mass and	
	energy	

Course Title: Electromagnetism and Electromagnetic Theory (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Apply Biot-Savart's law and Ampere's circuital law to find the magnetic	PSO-1, PSO-2,
	field intensity in various symmetric cases	PSO-3, PSO-4
CO-2	Idea of Lorentz's force and concept of magnetic induction, non-	PSO-1, PSO-2,
	existence of magnetic monopole	PSO-3, PSO-4
CO-3	Idea of magnetic vector potential and magnetic induction in simple cases	PSO-1, PSO-2,
		PSO-3

Department of Physics

CO-4	Analyse the importance of existence of displacement current, Idea of	PSO-1, PSO-2,
	Maxwell's electromagnetic induction, propagation of plain electromagnetic	PSO-3
	waves in free space	
CO-5	Generate some idea electromagnetic waves in free spaces, transverse	PSO-1, PSO-2,
	character	PSO-3
CO-6	To analyse the transverse character and polarized electromagnetic wave,	PSO-1, PSO-2,
	calculation of Poynting vector and Poynting's theorem, Importance of	PSO-3
	Hertz's experiment	
CO-7	To calculate reflection and refraction co-efficient of plane wave at the	PSO-1, PSO-2,
	boundary of two dielectrics, waves in conducting media, idea of skin effect	PSO-3, PSO-4,
	and skin depth	PSO-5
CO-8	Get an elaborate idea normal and anomalous dispersion, Cauchy and	PSO-1, PSO-2,
	Sellemier equation	PSO-3

Course Code-PHSH

PAPER-H4-B PRACTICAL (COMPUTER PROGRAMMING ON BASIC/FORTRAN)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand foundation concepts of information and information	PSO-5
	processing in computer systems: a matter of information, data	
	representation, coding systems	
CO-2	Understandof an algorithm and its definition.	PSO-5
CO-3	Understand of programming language syntax and its definition	PSO-5
	by example of BASIC language.	
CO-4	Know of basic principles of imperative and structural	PSO-5
	programming,	
CO-5	Writesimple programs in BASIC language by using basic control	PSO-5
	structures (conditional statements, loops, branching, etc.).	
CO-6	Create a programmable model for a problem given.	PSO-5
	Basic knowledge of working with arrays in BASIC language.	
	Handle possible errors during program execution.	
	Elementary knowledge of programming code style.	

Course Outcomes (COs): B.Sc. Physics Semester V Course Code-PHSH Paper-H5

Course Title: Mathematical Methods in Physics -II (Unit-I)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand the 1st and 2nd order ordinary linear differential	PSO-1, PSO-2,
	equations, and solve these equations using different methods especially	PSO-3, PSO-4
	by the method of separation of variables.	
CO-2	Get a comprehensive idea about the various method employed for	PSO-1, PSO-2,
	series solution of a differential equations like Legendre, Hermite and	PSO-3, PSO-4
	Laguerre's equation, idea about their orthogonality conditions and	
	recurrence relation will be also developed.	
CO-3	Analyse the complex variables and functions of a complex variable,	PSO-1, PSO-2,
	continuity and differentiability, singular points, removable, essential	PSO-3
	and isolated singularities	
CO-4	Get some idea about the branch cut and branch points, Riemann sheet	PSO-1, PSO-2,
	and Riemann surface, single and multi-valued function, idea of complex	PSO-3
	plane	
CO-5	Develop the necessary and sufficient condition for a function to be	PSO-1, PSO-2,
	analytic in nature (Cauchy Riemann Conditions), Harmonic function.	PSO-3
CO-6	Develop the understand the special type of integral transform like	PSO-1, PSO-2,
	Laplace transform, its properties and Laplace's transform for different	PSO-3
	cases	

Course Title: Atomic and Molecular Physics, Laser & Fiber Optics (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Analyse the spectrum of hydrogen atom with reduced mass correction,	PSO-1, PSO-2,
	its advantages, computation of magnetic moment of orbital electron	PSO-3, PSO-4
	and related discussion	
CO-2	Know about the importance of introducing the idea of Vector atom	PSO-1, PSO-2,
	model, consequences of Stern Gerlach experiment to establish the idea	PSO-3, PSO-4
	of electron spin	
CO-3	Analyse the meaning and requirements of L-S and j-j coupling schemes,	PSO-1, PSO-2,
	Lande-g-factor and its expression	PSO-3
CO-4	Explain the doublet structure in the spectra of alkali atom,	PSO-1, PSO-2,
		PSO-3
CO-5	Explain the phenomenon like normal and anomalous Zeeman effect	PSO-1, PSO-2,
	using the quantum theory, they will be able to conclude about the	PSO-3
	number of lines to be obtained in normal and anomalous Zeeman effect	
	for a given transition	
CO-6	Get some elementary about the various kinds of energies those need to	PSO-1, PSO-2,

Department of Physics

	be addressed while studying the molecular spectra,	PSO-3
	Analyse vibrational, rotational and electronic spectra of	
	diatomic molecules	
CO-7	Compute the Compton shift considering the energy and momentum	PSO-1, PSO-2
	conservation laws	
CO-8	Analyse the concept laser action, conditions required, Einstein's A, B	PSO-1, PSO-2,
	co-efficients, detailed idea of 3-and 4-level laser system and their	PSO-3
	working, basic principle of holography	
CO-9	Get some elementary idea about the optical fibre, its type, various	PSO-1, PSO-2,
	terminology	PSO-3

Course Title: Electronics (Unit-III)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand the working, characteristics and applications of	PSO-1, PSO-2,
	semiconductor diodes, idea of clipper and clamper	PSO-3, PSO-4
CO-2	Analyse the working of PNP and NPN transistor, current components in	PSO-1, PSO-2,
	a junction transistor CB, CE and CC configurations of transistor and	PSO-3, PSO-4
	their comparison.	
CO-3	Know about the working of a CE transistor amplifier, hybrid	PSO-1, PSO-2,
	parameters,	PSO-3
CO-4	Recollect different types of biasing methods for transistor.	PSO-1, PSO-2,
		PSO-3
CO-5	Understand the construction, working and industrial	PSO-1, PSO-2,
	applications of FETs,	PSO-3
CO-6	Understand Operational amplifier, concept of virtual ground, applications	PSO-1, PSO-2,
	of OP-AMPs.	PSO-3
CO-7	Generate some idea of feedback amplifier and its working, various	PSO-1, PSO-2
	types of oscillators	
CO-8	Idea of principle of radio transmission and reception using block	PSO-1, PSO-2,
	diagrams	PSO-3
CO-9	Get detailed idea about the role of ionosphere in radio wave	PSO-1, PSO-2,
	propagation	PSO-3

Course Title: Statistical Mechanics (Unit-IV)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Explain statistical physics and thermodynamics as logical consequences of	PSO-1, PSO-2,
	the postulates of statistical mechanics.	PSO-3, PSO-4
CO-2	Remember and describe micro and macro states	PSO-1, PSO-2,
		PSO-3, PSO-4
CO-3	Analyse the differences in micro-canonical, macro-canonical	PSO-1, PSO-2,
	and grand canonical ensembles.	PSO-3
CO-4	Analyse the phase transition of different systems.	PSO-1, PSO-2,

Department of Physics

		PSO-3
CO-5	Distinguish between different types of particles, and understand	PSO-1, PSO-2,
	particle statistics.	PSO-3
CO-6	Distribute classical particles, bosons and fermions among	PSO-1, PSO-2,
	energy levels.	PSO-3

Paper-H6 (PRACTICAL: NON-ELECTRONICS)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Investigate the working of LCR circuit, Anderson's bridge,	PSO-5
CO-2	Use the concept of diffraction in a grating to determine lines per cm and wavelength of unknown radiation, Using the idea of interference in Fresnel Biprism how one can determine the wavelength of unknown radiation	PSO-5
CO-3	Determine experimentally the mechanical equivalent of heat and study	PSO-5
	the B-H loop for a ferromagnetic specimen	

Course Outcomes (COs): B.Sc. Physics Semester VI Course Code-PHSH Paper-H7

Course 1	Lourse Title: Nuclear Physics (Unit-I)		
Sl. No.	On completing the course, the student will be able to:	PSOs	
		addressed	
CO-1	Understand different properties of the nucleus, bindingenergy, and the	PSO-1, PSO-2,	
	measurements of the size of the nucleus.	PSO-3, PSO-4	
CO-2	Analyse the concept of Q-equation in different nuclear	PSO-1, PSO-2,	
	reactions, and understand the radioactive decay of alpha, beta	PSO-3, PSO-4	
	and gamma rays, and their fine structure spectra.		
CO-3	Analyse different nuclear models, viz., liquid drop model and	PSO-1, PSO-2,	
	shell model, and their applications.	PSO-3	
CO-4	Understand generation of nuclear energy by nuclear fission and	PSO-1, PSO-2,	
	nuclear fusion processes; designing different types of fission	PSO-3	
	and fusion reactors		
CO-5	Design and analyse various nuclear detectors and their	PSO-1, PSO-2,	
	applications.	PSO-3	
CO-6	Understand the concept of nuclear force, design different types	PSO-1, PSO-2,	
	of accelerators for production of elementary particles, and	PSO-3	
	analyse different properties of elementary particles based on		
	the Quark Model		

Course Title: Quantum Mechanics (Unit-II)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand physical situations where classical physics fails,	PSO-1, PSO-2,
	and how quantum concepts explain it.	PSO-3, PSO-4
CO-2	Understand the mathematical basis of quantum theory and	PSO-1, PSO-2,
	concept of probabilistic approach.	PSO-3, PSO-4
CO-3	Understand the concept of quantization and discrete energy	PSO-1, PSO-2,
	states.	PSO-3
CO-4	Apply the quantum theory to many idealistic situations and	PSO-1, PSO-2,
	solve problems.	PSO-3
CO-5	Apply quantum theory and perform mathematical analysis of	PSO-1, PSO-2,
	more complicated systems	PSO-3
CO-6	Apply quantum theory to a real world example of hydrogen	PSO-1, PSO-2,
	atom and look at limitations of the quantum theory.	PSO-3

Course Title: Condensed Matter Physics (Unit-III)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Understand crystal structures, crystal planes and directions, and	PSO-1, PSO-2,
	Miller indices.	PSO-3, PSO-4
CO-2	Understand Bragg's law and methods of crystal structure	PSO-1, PSO-2,
	determination.	PSO-3, PSO-4
CO-3	Understand free electron gas model and band model (Kronig	PSO-1, PSO-2,
	Penney model).	PSO-3
CO-4	Apply the band theory to understand the motion of charge	PSO-1, PSO-2,
	carriers in solids.	PSO-3
CO-5	Understand the concepts of magnetization and origin of	PSO-1, PSO-2,
	magnetism in an atom, and differentiate between dia, para and	PSO-3
	ferromagnetic materials.	
CO-6	Understand the quantum theory of dia, para and ferromagnetic	PSO-1, PSO-2,
	materials.	PSO-3

Course Title: Digital Electronics, Computer (Unit-IV)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Get basic idea about digital electronics like binary and decimal number	PSO-1, PSO-2,
	system, their inter-conversion, binary addition and subtraction,	PSO-3, PSO-4
	Boolean algebra	
CO-2	Understand the working of various logic gates like AND, OR and NOT	PSO-1, PSO-2,
	gates using discrete components	PSO-3, PSO-4
CO-3	Understand the working of various combinational circuits adder and	PSO-1, PSO-2,
	subtractor, multiplexer, flip-flops	PSO-3
CO-4	Generate the idea of different operating systems, idea of simple MS-	PSO-1, PSO-2,
	DOS commands	PSO-3
CO-5	Get some elementary idea about flow-chart, algorithm, programming	PSO-1, PSO-2,
	using BASIC.	PSO-3
CO-6	Idea about different BASIC commands.	PSO-1, PSO-2,
		PSO-3

Paper-H8 (PRACTICAL: ELECTRONICS)

Sl. No.	On completing the course, the student will be able to:	PSOs
		addressed
CO-1	Investigate the working of triode and to determine the voltage gain, working of a transistor (its input and output characteristics), characteristics of Zener diode and study of line and load regulation	PSO-5
CO-2	Investigate the working of static, dynamic and transfer characteristics	PSO-5

Department of Physics

	of FET	
CO-3	Construct half and full wave rectifier with and without R-C filter	PSO-5
CO-4	Study of operational amplifier (IC-741)	PSO-5
CO-6	Design the logic circuits like OR, AND & NOT circuit using discrete components, Boolean expression and realization of relevant truth tables	PSO-5